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ABSTRACT 

We use N=2 extended supersymnetry to 
dramatically simplify the diagrammatic calculations 
of perturbative QCD. The production, by gluon-gluon 
fusion, of two gluons, three gluons, and two massless 
gluinos plus a gluon are used as examples. 
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Standard applications of perturbative QCD [l] for hadrons involve 

the convolution of parton scattering cross sections with hadron 

structure functions. The calculation of these parton scattering cross 

sections by the use of Feynman diagrams is the subject of this paper. 

It is well known that the evaluation of QCD Feynman diagrams rapidly 

becomes extremely complicated, even at tree level, as the order of 

perturbation theory increases. This complexity arises because of the 

difficulty of performing algebraic manipulations with a large number of 

terms. Consider multi-jet production at hadron colliders. Two-j~et 

production is easy to handle; the most complicated subset of diagrams 

corresponds to the elastic scattering of two gluons, which can be easily 

calculated by hand. Considerable complications appear in three-jet 

production because of the contribution from two gluons scattering into 

three gluons. There are twenty five diagrams for this purely gluonic 

process, all of them containing at least one three-gluon vertex. Thus, 

the cross section is virtually impossible to compute by hand; symbolic 

manipulation programs make it barely tractable. 

In this letter we present a new technique for calculating QCD 

Feynman diagrams, which enables dramatic simplification of such 

computations. The main idea is to embed QCD in a minimal N=2 

supersymnetric extension such that to tree level the two theories are 

identical for quarks and gluons. In this extended theory there are 

simple relationships between vector ( gluon ) scattering amplitudes and 

scalar scattering amplitudes when expressed in terms of the helicities 

of the external particles. Loosely speaking, supersymnetry allows the 

replacement of some external gluon lines by scalar lines. Thus a vector 

scattering amplitude is calculated by first calculating the appropriate 
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scalar amplitude. This procedure causes a great reduction in the number 

of terms involved and hence great simplifications. First, most, if not 

all, the troublesome three-gluon vertices are absent and second, most of 

problems associated with the polarization vectors for the external 

gluons are circumvented. Cross sections are obtained by sumning the 

squares of the different helicity amplitudes. 

More precisely, we embed QCD in its minimal supersynmietric 

extension which contains the scalar particles in the gauge 

hypermultiplet. This is the SO(Z) extended supersymnetric QCD [2]. The 

SO(2) model describes gluons, two species of gluinos, one complex gauge 

scalar in the adjoint representation, quarks, squarks, mirror quarks and 

mirror squarks. In terms of N=l superfields [3], the SO(2) gauge 

hypermultiplet consists of one gauge vector superfield V ( gluon g and 

gluino X ) and one chiral superfield X ( gluino x and complex scalar $ ) 

in the adjoint representation. The matter hypermultiplet consists of 

left-handed quark superfield L ( left-handed quark q and squark 0 ) and 

right-handed mirror superfield Rf ( right-handed mirror quark ! and 

mirror squark pf ). The SO(2) Lagrangian [2], written in terms of N=l 

superfields, is 

gip=-L 
Q ["IF + [JTigRXLIF + h.c. 

t [2TrX'e2gVXh2gV t L+&'L t R',2gVTR]D. (1) 
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Let Qi, a=1,2, be the supersynmetry generators which transform like 

Majorana spinors and conmute with the S-matrix. From these, we define 

two hermitian operators, Qa(na) = i:Qz, where n is an arbitrary Majorana 

spinor, parametrized as follows: 
* * * * 

n=:[n,tn,.-n1+n*,-nI+n~,-~I-n2]. (2) 

Unbroken extended supersymnetry implies that the operators Qa(n) 

annihilate the vacuum: Qa(n)Jvac> = 0. We are interested in scattering 

amplitudes, i.e. the vacuum expectation values of the products of the 

creation and annihilation operators. Therefore, let us denote by zl(pi) 

the annihilation operator for the particle z(=g,X,x,grq,flrr,Pt) of 

helicity s(=+,-) and momentum 

pi = Ei ( 1 ) sineicossi , sinaisingi , cosei ). (3) 

The supersymmetry operators Qa(n) act on these annihilation operators in 

the following way [4]: 

IQa(n),~~(~)] = ?rT(p,n)giaab ; irf(p*n)$tcab 

[Qab),s,(pH = $tp,n)h; 

[Qa(n),$,(p)] = *ir?(p,n)cabii 

[Qa(n),~t(p)] = 'frT(p,n)q?aab i irr(p,n)r,Eab 
a r 

+ 
[Q ln), +(P)J = tir-(p,n)c 

abrb 
+ 

[Qato),s,(p)l = ;irr(p,q)cz , 

(4) 

(5) 

(61 

(7) 

(8) 

(9) 

where 

r+(p,n) = [r-(p,n)]* = JEE[n,cose/2e is/2 t il,sine/2e-i8'2] (10) 

and the conventions of Refs[4] are used. 
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In Eqs(4)-(9), the notation X1=X, X2=x, ~~=a, c2=pt, is used in 

order to make the SO(2) syrnnetry manifest. We adopted the convention 

that for the scalar particles the helicity plus annihilation operator 

annihilates the particle, whereas the helicity minus operator 

annihilates its complex conjugate. Since supersymnetry commute with the 

S-matrix, both "in" and "out" operators transform in the same way. The 

commutators for the creation operators are obtained from Eqs(4)-(9) by 

hermitian conjugation. Care must be taken with signs when commuting 

r(p,n) as r is a Grassmann variable. 

The relations between different scattering amplitudes can be 

obtained in the following way [4]. Since Qa(n)lvac> = 0, we have: 

0 = <vacl[Qa,z,&t...z~utz~~...z~~]lvac> 

= $ <vaclz&t...[Qa,z~ut]...lvac> 

+ 1 <vaclz~ut...[Qa,z$n]...lvac>. 
j 

Inserting the commutators, Eqs(4)-(9), we derive linear relations 

between amplitudes, with coefficients that are either l?'(n) or r-(n). 

These relations split into four separate equations, since ran, rlZ, n:, n: 

are independent. They relate amplitudes for particles with different 

spin. It is worth mentioning that these equations can imply zero values 

of some amplitudes, reflecting the conservation laws of the model. 
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The last step of our procedure follows from the observation that 

due to R-parity [5], the "true" QCD processes with external gluons and 

quarks do not involve, in the tree approximation, any new interactions 

beyond the familiar quark and gluon couplings. Hence Eq.(ll) allows us 

to express the QCD tree amplitudes in terms of the amplitudes for the 

processes involving the "exotic" particles ( preferably of spin zero ). 

Beyond the tree a,pproximation things are more subtle. First of all one 

has to use a regularization procedure which preserves supersymnetry, 

like e.g. dimensional reduction [6]. Furthermore, the loops of 

"exotic" particles in diagrams with external gluons and quarks give some 

extra, undesired contributions, which have to be subtracted when 

calculating a "true" QCD amplitude. 

In the rest of this paper we illustrate our procedure on a number 

of examples: the production, by gluon-gluon fusion, of two gluons, three 

gluons, and two gluinos plus a gluon, in tree approximation. Let 

M( z1 zk ;zktl sl'"' Sk z" ) denote the amplitude for the process with Sktl'"' snl 

the initial particles z ,..,zk of helicities sl,..,sk and momenta 

Pl$.-'Pk' and final particles z k+l ,..,z" of helicities sktI,..,sn and 

momenta pktl,..,pn, so that: 

M( z1 zk ;zktl sl'"' Sk 
Z" ) = 

Sktl'"' sn 
<vaclz: . ..z&z~~...z'+lvac). 

s1 
(12) 

n 

For two gluons production, all helicity amplitudes can be obtained 

by crossing from W &gf ; &it ), W s&f 3 4 ; 9,19- 1 and 

Mt 9' g2 +, + ; g!,g! ). By inspecting the equations corresponding to: 
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<vacl[Q’, g- 4 9, 3 g, 2t 1, 1t lIvac> = 0, 

<vacl [Q* , g- 4 CL 3 9, 2+ kl+]Ivac> = + 0 , 

we find 

3 4 M( g.;>sf ; g,>g- ) = M( &$ ; s:,g! ) = 0. 

From 

4 3 2t 1t <vacl[Q’, 9, 9, gt A+ llvac> = 0, 

<vacI[Ql, hz 1: gzt Xi']Jvac> = 0, 
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(13) 

(14) 

(15) 

(16) 

(17) 

we obtain 

rfv &g? ; f&34, 1 - r+M( x1 g2 . 3 +’ + * &3~ 1 

- r;w x$s~ ; g;,x: ) = 0, (18) 

?,I g2 ; g3 x4 ) t’ t t’ t 

(19) 

Straightforward calculation leads to the result that 

IV g;,g; ; g$g~ )I = tM( +f ; +; )I. (20) 

The phases of amplitudes are irrelevant, since the different helicity 



where 

3 4 
; 9+.9+ )I = IM( of.,( ; o;+(I )I. 121) 
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amplitudes do not interefere. These phases can be quite complicated 

because of the spin-statistics connection. 

Similar manipulations with the second supersymnetry operator QZ 

allows us to express the r.h.s. of Eq.(20) in terms of the amplitude 

for the elastic scattering of gauge scalars. The result is 

It remains now to calculate M( @:,I$: ; &( 1. It is easy to 

verify that, due to R-parity, the tree level diagrams with external 

gauge scalars ( and gluons ) involve only those interactions in the 

Lagrangian, Eq.(l), which correspond to a variant of the [OJ4 theory: 

LX+ = -:F 
vu 

.Fu" - 0 $+.Dpe 
v 

- $J~(@x~+).(~+x~). (22) 

Dll$ = ap+ + q,x$. (23) 

F TV denotes the gauge-field AV strength tensor. The cross product is 

taken with the gauge group structure constants fXyZ. 

There are three Feynman diagrams, see Fig. 1, which contribute to 

the amplitude: 

2 (12) 
Y @:,4-f ; e:,@t 1 = 2ig fX13fX24 __ + [ l-2 1. 

(13) 
(24) 

We symbolically denoted the color index of the ith particle by i and 

(ij) = Pi'Pj' After taking the square of the modulus of the amplitude, 

summing over final and averaging over initial color indices, we obtain: 



-9- FERMILAB-Pub-85/31-T 

IM( s:,s: ; &( )I 
2 _ 4g4N2 s2 

N2-1 
[ t-2 t u-2 t t-L-1 ), (25) 

where s, t and u are the usual Mandelstam variables and N is the number 

of colors. All nonvanishing~ helicity amplitudes can be obtained from 

this equation by crossing. The final result is calculated by sumning 

over final and averaging over initial polarizations: 

iM( g1,g2 ; g3,g4 ),2 3.Y ( 3 _ St _ tu _ us j, 
N2-1 u2 s2 t2 

(26) 

in agreement with previous calculations. 

For two gluon scattering into three gluons, we find, by essentially 

repeating the steps described in the previous example, the following 

results. All nonvanishing helicity amplitudes can be obtained by 

crossing from M( $9; ; &s$s~ 1 and W c&g: ; 933&!3~ ). 

Supersymnetry allows us to express these amplitudes in terms of the 

amplitudes for two gauge scalars scattering into two gauge scalars plus 

a gluon: 

(121 14 c&g; ; s$&$ )I = - IN o1 +2 
(45) +' + 

; s$t&; )I> (27) 

IW g1 g2 
(45) 

t' t ; 9_3,9$!3~ )I = - tM( o1 +2 
(12) +' + 

; s_3.0~,9~ )I. (28) 

The calculation of the scalar amplitudes is simple and 

straightforward. Inserting this result ( sumned and averaged over final 

and initial color indices, respectively ) into Eqs(27)-(28) we obtain 
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IM( g1 g2 * 3 4 5 2 _ -g6N3 
+' + 3, 9+,9+r9+ )I - 

40(N2-1) 

and 

IM( 52 g2 
3 4 5 2 _ -g6N3 

t' t ; cl-r9+,!3+ )I - 
40(N2-1) 

(29) 

(30) 

where 1 denotes the sum over all permutations of 1 through 5. After 
P 

surnaing over final and averaging over initial polarizations we get the 

final result: 

IM( g* g2 3 ; g3 g4 g5 9 , 

(31) 

in agreement with Ref.[7]. 

We used the algebraic manipulation program SCHOONSCHIP for 

book-keeping in the calculation of the scalar amplitudes. The number of 

terms generated at intermediate stages of the calculation never exceeded 

two hundred, compared to a typical brute force calculation which would 

produce around one million terms. Furthermore, our calculation 

"explains" the beautiful, factorized form of the result. The factor 

(II(iI.z(12)(23)(34)(45)(51) is corrmon to all helicity amplitudes, 

whereas z(12)4 comes from sunming over polarizations. 
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To further demonstrate the power of this method, we calculated the 

scattering of two gluons into two massless gluinos plus a gluon. The 

helicity amplitudes are related by equations similar to Eqs(27)-(28) and 

the matrix element squared suitable sumned and averaged is 

IV &g2 ; g3,x4,2 )I2 = 

.((14)3(15) + (24)3(25) + (34)3(35) + [ 4-5 1). (32) 

This is a new result. 

We hope that these examples demonstrate the power, efficiency and 

elegance of the technique presented in this paper. A calculation of the 

scattering of two gluons into four gluons is currently under way using 

this technique. 

We thank Keith Ellis for many useful discussions during the course 

of this work. 
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FIGURE 
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Fig.l.Feynman diagrams for elastic scattering of two scalars 0. 


